By 2020, smart machines will be a top five investment priority for more than 30 percent of CIOs, according to advisory company Gartner. With smart machines moving towards fully autonomous operation for the first time, balancing the need to exercise control versus the drive for profit is crucial.
Brian Prentice, research vice president at Gartner, said Google”s self-driving car project is a perfect example of why pursuing full autonomy may be neither possible nor desirable in smart machines.
“Human beings are still required as the final point of redundancy in an autonomous vehicle, so a fully autonomous car requires a steering wheel should a driver be required to take control,” said Prentice. “But putting a steering wheel in an autonomous car means a fully licensed, sober driver must always be in the car and prepared to take control if necessary. Not only does this destroy many of the stated benefits of autonomous vehicles, but it changes the role of the driver from actively controlling the car to passively monitoring it for potential failure.”
According to Gartner, the “Google Steering Wheel Dilemma” represents a challenge all smart-machine initiatives face.
“Smart machines respond to their environment. But what is the environment that the smart machine is responding to? Environments that are largely uncontrollable are not amenable to smart machine projects because it is difficult, if not impossible, to model accurately,” Prentice added. “The trick then is to figure out what is actually controllable and limit smart machines to that which can be accurately modeled and managed.”
Gartner”s research VP said that major unresolved problems in machine learning solutions, such as how to ensure learning data is fully representative and how to avoid “reward hacking,” need to be addressed before any autonomous machine that continues to learn from its environment can be deployed as a mass-market solution to a real-world problem.
“The vision of the fully autonomous vehicle will not become reality, for any car manufacturer, in a time frame that doesn’t fall into the realm of science fiction,” said Mr. Prentice. “The failure of this vision will be set against the backdrop of advances in smaller, more pragmatic applications of machine learning in automobiles that will improve safety and driver experience.”
According to Gartner, CIOs seeking to maximize benefits of smart machine solutions must:
tags
Former business journalist, Razvan is passionate about supporting SMEs into building communities and exchanging knowledge on entrepreneurship.
View all postsDecember 19, 2024
November 14, 2024